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NONLINEAR DYNAMICAL FORMULATION FOR DESCRIBING GROWTH OF
CANCER CELLS BASED ON INTRACELLULAR CONSTITUENTS

Clifford M. Krowne and Aaron P. Krowne

ABSTRACT
A set of equations characterizing the
interactions between RNA, DNA and proteins is

postulated to describe the growth of tumor cells. From
this set of equations, a method to determine the fixed
points of the system is presented including the use of
the Jacobian matrix. Assessment of the nonlinear
dynamics around these fixed points is provided.

1. INTRODUCTION

It is widely recognized that the common and

perhaps only methods to treat cancer involve the
modalities radiation treatment [20], chemotherapy,
surgery, microwave hyperthermia [4], and

combinations of these modalities with the added
possibility of immuno-gene therapy using the
genetically engineered molecule interleukin-2 (

recombinant rIL-2 via DNA slicing) and LAK cells (
lymphocytes IL-2 exposed acting as killer cells). All of
these modalities have relative merits and disadvantages.
But an overriding concern is that they all fail to reduce
the number of tumor cells below a level at which they
cease to replicate. Thus enough tumor cells seem
always to be left which forms the starting population

for another nonlinear growth process. There are
hundreds of types of cancer [2] and many dozen
general categories including lymphoma, mammary

[23], prostate [25], myeloma, brain [16], lung, leukemia,
melanoma to name a few. Breast cancer [8, 11] comes to
mind as one of the most publicized and difficult cancers
to understand and treat effectively. In contrast,
lymphoma may be treated relatively effectively by
surgical removal and a secondary modality if warranted
( i.e., chemo or radiation therapy).

The intent of this paper is to outline qualitatively
and quantitatively the possibilities of using nonlinear
mathematics [12,15,18] in explaining cell growth from a
point of view of physics [5-7, 9, 13, 14] and engineering
[1, 3, 10, 17, 22, 24]. A specific set of equations
characterizing the interactions between RNA, DNA and
proteins is postulated to describe the growth of tumor
cells. From this set of equations, a method to determine
the fixed points of the system is presented including
the use of the Jacobian matrix. Assessment of the
nonlinear dynamics around these fixed points is
provided. It is hoped that this approach will lead to a
greater understanding of the behavior of cancer.

2. METABOLIC CELL GROWTH BEHAVIOR

Increase in the number of livings cells,
malignant or normal, requires a number of biological
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processes to happen between two successive cell
divisions. Cell mass should approximately double, and
the genectic material encoded in the cellular DNA  must
be provided to the two daughter cells. The time between
cellular divisions, the period T, is often divided into
three unequal intervals. These three intervals are
referred here to as the Gjp interval, the S interval, and
the G2M interval. The Gjp interval involves cellular
events which are preparatory to DNA  production in
the following S interval. Molecular events inside the
G interval are not, so we think, as clear as those
occurring inside the S and GoM intervals.

A number of models have been proposed which
suggest that it is in the G1 interval that the cell decides
to synthesize DNA or enter a quiescent state. And it
may be at a particular development level ( call it a
critical point) in the Gj interval that the decision
whether or not to synthesize DNA occurs. The
mechanism for DNA  triggering may be delocalized in
space with a. stochastic flavor caused by random
molecular collisions at numerous cellular sites. This
may also suggest that the critical point is spread over
the Gi interval with a function describing that
characteristic.

The G time interval Ti
nutrient environment

is dependent upon the
including growth factors  Some
research information indicates that the sequence of
events in the G interval are related to proto-
oncogenes, units of genetic information that code for
growth factor-like proteins. Oncogenes are expressed
one after another during the cell cycle. Expression of a
gene begins with the production of a string of mRNA (

messenger RNA) This suggests that protein
generation results from RNA  presence.

After the G  interval and before the G2M
interval, is the S interval during which DNA is

actually produced. Some consider this the most vital
part of cell life. The last interval, the G2M, constitutes
the time span during which the cell prepares for cell
division, doing this by separating the DNA into two
identical copies and then physically splitting the cell.
Another matter to be aware of is asymmetric
cytokinesis, whereby the cell grows and divides into
two unequal sized or constituent filled daughter cells.

Both RNA and protein arc unequally distributed
among the daughter cells as a result of this
phenomenon.  Cells which have more RNA in earlier

part of the Gp interval which immediately follows cell
division traverse the cell cycle faster than those that
inherited less RNA. It appears that RNA is unequally
divided in an apparently random way between
daughter cells.
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3. FORMULATION OF NONLINEAR CELLULAR
GROWTH EQUATIONS

Following other work [19], it is reasonable as a
first approximation to describe the linear interactions
between the concentrations of RNA, DNA, and protein
by the autonomous - like equations ( no explicit time
dependence)

dR(t)
—= = -apR@®) + ayP(t
m anR@) 21P(t) (1)
dP(t)
—=% = apR®) - apP(
m 12R(1) 22P(1) )
0 t < Ty
% = BHPt-Ty) - PO)] T, <t £ T; + Ty
0 T, +T, <t T
(3)
Here R(t), D(1), and P(t), are respectively the RNA,
DNA, and protein concentrations inside the cell. These

cquations describe the concentration changes within
the cell over time in relation to the total time T it takes
for a cell mitosis or division leading to replication. The
first part of the process, taking time Ti, is an interval
involving no DNA synthesis. The next interval of time
, of length T2, involves DNA  synthesis. The last
interval again involves no DNA synthesis. This DNA
behavior reflects the widely accepted view of what
occurs during cellular growth and mitosis.  Mitosis is
that process whereby the cell duplicates the genetic
information to split or divide. The other cellular
organelles, proteins, and RNA are also replicated in
accordance with this mitotic process.

Coefficient a1 gives the reduction of RNA
over time and a2] gives the increase in RNA due to the
ambient protein concentration P(t). Coefficient aj2
gives the increase in protein concentration due to the
ambient RNA concentration R(t). Coefficient a2 2
gives the reduction of protein over time.

The boundary conditions under which equations
(1) through (3) are solved are

RO) = PO) = DO) = 1 (42)

R(T) = P(T) = D(Tl + T2) = 2 (4b)

Boundary conditions (4) indicate that at time t = 0 the
normalized concentrations of RNA, DNA, and protein
are unity, that is, there is one cell with its
concommitment of constituents, including the required
amounts of RNA, DNA, and protein. After the period T
clapses, the cell has wundergone exactly one cell
division, doubling the qunantity of constituents
including its RNA, DNA, and protein content. More
exactly stated, just before period T, the cell has twice as
much RNA, DNA, and protein, which will be used to
produce the two new cells originating from the single
cell in the mitotic process.

Equations (1) - (3) may be written in a more
compact and general form for Ty <t < T] + T2 as

R(t) -a;y a0 R(1)
&df P) | = | a2 -ax O P(t)
D(t) 0 T. 0 ILDQ® (5)
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where T¢ is the translation and subtraction constant

operator

T.P(t) = Pt - T)) - PO (6)

We may wish to call this system semi-autonomous
because of the time translation behavior. Furthermore,
the original set of equations (1) - (3) has the third
equation giving dD(t)/dt with different expressions in
time. This amounts to an explicit time form. Thus the
original system is in reality nonautonomous. Only in
the interval Tt <t < Tp + T2 is the system
autonomous with a general form

%X = fu(x) (7)
where the dot above x indicates a total time derivative
and u is the parameter space vector. x is the variable
space vector given by

x = [R P DT (8)

and fy is the nonlincar operator and fy(x) is a
vector. For the linear case of (5), it fy reduces to

-ann a0
fu = | a2 -app O
0 T, O 9)
which is a matrix operator. Clearly,
fux) = fyx (10)
The vector representation of fy(x) is
fux) = [fi £ T (11)
where
fi = -apR(H + ayP(t) (12a)
f2 = -apRM) + anP@) (12b)
f3 = BHPE-Ty) - PO)] (12¢)
We can postulate nonlinearities of a fairly

general nature and modify (5) accordingly. Writing
these equations out in an open form like (1) - (3),

d_RE:Q = -auR(Q) + axP() + ble(l)+bzP2(t)+b12R(l)P(t)+'"(1 3
% = - a1R() - 222P() + CIR(t) + c2P*(1) + czROPE) + -~ (14)

0 t < T

d-D(thl =t[P(t- T1) - PO)] + B{P(t-T1) -PO) + — Ti<t<Ti + T2

(=]

Ti+Ta < t£ T
(15)
For the interval T1 <t < Ty + T2, (13) - (15) can

be put into the compact form (7) where
fi = -auR()+auP®) + biR*(t) + bP°(1) + brROPM) + ~ (16a)

fa

- a12R(0) - a22P(t) + CIR(1) + CoP*(1) + c1R(OP(H) + (1 6b)



5 = YP(t-T1) - PO) + BP(-To) - POP + -(16¢)

The Jacobian matrix operator
produces the Jacobian J

Jo on fy(x)

o o o |

aX1 axz ax:;

of, ofy of
J = Lfux) = | 22 22 22
ax1 aX2 aX3

La)q ax2 aX3 i (17)

Using the specific forms for the components of fy(x) ,
(17) becomes

(-an +201R +baP)  (az +2b2R + byoP) 0
Jfux)=| (ap+2cR+c1P) (-an+2cR +cpP) )
0 of3/oxz 0
(18)
to second order in the nonlinear terms. Let us evaluate
of3/0x5
o{b[P(t- T1) - P(0)] + By[P(t-Ty) - PO)P
styox, = NUPQ-T)-PO) + BiP¢-Ty-POP)

P (19)

Notice that the first two equations in (16) are
independent of D, the DNA concentration.  This
presumably makes sense because DNA is finally
constructed from protein P and RNA R. Thus for the
system as posed, we really have a 2x2 sized problem
coupled to a third nonlinear equation. The 2x2
Jacobian J for this system can be extracted from (18)

as
J = Jofu(x)= (-a11 + 2R +b12P) (a2t + 2b2R + b1oP)

@z +20R+c1P) (-2 + 20R +cuP) [20)
Once the 2x2 system is solved, the nonlinear dynamical

behavior of DNA can be found from (16c).

One could also suppose, since D =£(P) i form,
that P has terms in D. Maybe, even R has D terms.
Finally, maybe D may not be independent of R and D.

Nonlinear behavior can be determined locally by
finding the fixed points of the system, linearizing about
those fixed points, and studying the stability
characteristics of the particular system under
consideration. A fixed point X* occurs at

x =0 (21)
so that (7) becomes
fux) = 0 (22)

Fixed points occur when the system variable motion is
zero as (21) states. It is possible to have only part of the
variable space motion zero, in which case (21) will only
hold for those appropriate components.

i=1,-

x; = 0 -k £ N (23)
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where the system is N dimensional.
Linearizing (7) about the fixed point X* gives

W) = fux) + ——af“(")l

X X = X=*

(X - X*) +

(24)
Truncating this equation after the seccond term and
noticing that the coefficient in the second term is just
the Jacobian matrix evaluated at the fixed point X+ ,

J - af..(x)l
Jx Ex =xx

(24) can be written as

(25)

fu(x) = fu(xx) + J(x - x+) (26)

Defining a new variable y
point

in reference to the fixed

Yy = X - X=* @n
noting that (22) holds, and that

y = X (28)
we find that

y = Jy (29)

Linear solution of (29) allows the determination
of the types of stability behavior about the individual
fixed points. All of the mathematics of linear matrix
analysis can be brought to bear on the solution of (29).

4. CONCLUSION

Because the fundamental wunderlying growi:
behavior of tumor cells is nonlinear, this paper focused
on studying a particular set of equations describing
the interactions of DNA, RNA, and proteins in the
context of a linear system and its generalization to a
nonlinear system. It is hoped that the work here will
lead to further research into nonlinear dynamics of
cancer cellular growth. There have been many studies
which have dealt with the growth of cancer cell
population dynamics from an intercellular point of
view [26-39], but little work has been done, as this
paper has attempted, to derive models for intracellular
behavior [40-46] which describe tumor growth.
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